
AI match maker for Prologin finals

Thibault Allançon
December 2018

1



Background



Prologin

• Non-profit organization
since 1991

• National computer
science contest

• Girls Can Code!

2



Prologin

• Non-profit organization
since 1991

• National computer
science contest

• Girls Can Code!

2



Prologin

• Non-profit organization
since 1991

• National computer
science contest

• Girls Can Code!

2



National Computer Science Contest

Prologin
2019

•

•

•

•

• •

•

•

•

•

•

• Free computer science contest
• Open to French-speaking students under 21
• Introduces the world of programming and algorithms

3



National Computer Science Contest

• Qualification

• Regional events
• Finals

Online exercises and quiz (3 months)

4



National Computer Science Contest

• Qualification
• Regional events

• Finals

Theoretical and practical exam (1 day)

4



National Computer Science Contest

• Qualification
• Regional events
• Finals

Artificial intelligence battle (3 days)

4



The Finals

5



The Game

We create a custom game every year.

6



Our needs

• Flexible
• Polyglot
• Distributed
• Isolated

7



Our solution

stechec

8



Our solution

stechec2

8



Architecture



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestate

local gamestate

local gamestate local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestate

local gamestate

local gamestate local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestatelocal gamestate

local gamestate local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestatelocal gamestate

local gamestate local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestatelocal gamestate

local gamestate

local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



stechec2 architecture

Server Spectator

Player 1 Player 2

local gamestate local gamestate

local gamestate local gamestatelocal gamestate

local gamestate local gamestate

local gamestate

P1 turn

• Call user functions
• Check actions on

local gamestate

Send back actions

Check actions on
local gamestate

Propagate actions

9



Problem I: Flexibility



Flexibility

We want generic and re-usable code…

…but we need flexibility to have original games

10



Flexibility

We want generic and re-usable code…

…but we need flexibility to have original games

10



Interface

Generic interface:

• at_start

• start_of_player_turn

• end_of_round

• …

Each type of rules overloads interface functions:

• Synchronous rules
• Turn based rules

11



Interface

Generic interface:

• at_start

• start_of_player_turn

• end_of_round

• …

Each type of rules overloads interface functions:

• Synchronous rules
• Turn based rules

11



Creating a game

Coding a game always starts with a YAML file:

• Name
• Rules type
• Constants
• Enumerations
• Structures
• Actions functions
• Observers functions

stechec2-generator rules prologin2019.yml prologin2019

12



Creating a game

Coding a game always starts with a YAML file:

• Name
• Rules type

• Constants
• Enumerations
• Structures
• Actions functions
• Observers functions

stechec2-generator rules prologin2019.yml prologin2019

12



Creating a game

Coding a game always starts with a YAML file:

• Name
• Rules type
• Constants
• Enumerations
• Structures

• Actions functions
• Observers functions

stechec2-generator rules prologin2019.yml prologin2019

12



Creating a game

Coding a game always starts with a YAML file:

• Name
• Rules type
• Constants
• Enumerations
• Structures
• Actions functions
• Observers functions

stechec2-generator rules prologin2019.yml prologin2019

12



Creating a game

Coding a game always starts with a YAML file:

• Name
• Rules type
• Constants
• Enumerations
• Structures
• Actions functions
• Observers functions

stechec2-generator rules prologin2019.yml prologin2019

12



Problem II: Polyglot



The API user interface

Actions functions:
• deplacer

• glisser

• pousser

Observers functions:
• position_agent

• liste_aliens

• info_alien

• …

Problem: This interface is coded in C++

Solution: Use foreign function interface (or simply FFI)

13



The API user interface

Actions functions:
• deplacer

• glisser

• pousser

Observers functions:
• position_agent

• liste_aliens

• info_alien

• …

Problem: This interface is coded in C++

Solution: Use foreign function interface (or simply FFI)

13



The API user interface

Actions functions:
• deplacer

• glisser

• pousser

Observers functions:
• position_agent

• liste_aliens

• info_alien

• …

Problem: This interface is coded in C++

Solution: Use foreign function interface (or simply FFI)

13



Contestant environment

stechec2-generator player prologin2019 env

env/
c/
caml/
cs/
cxx/
haskell/
includes/
java/
php/
python/
rust/

14



Contestant environment

stechec2-generator player prologin2019 env
env/

c/
caml/
cs/
cxx/
haskell/
includes/
java/
php/
python/
rust/

14



Simple case: C++

cxx/
Makefile
prologin.cc
prologin.hh

15



prologin.cc

#include "prologin.hh"

void partie_init()
{
}

void jouer_tour()
{
}

void partie_fin()
{
}

16



prologin.hh

#ifndef PROLOGIN_HH
#define PROLOGIN_HH

...

// constants
#define NB_TOURS 100
...

// structures/enums
typedef enum direction {

NORD,
EST,
SUD,
OUEST,

} direction;
...

// Actions functions
erreur deplacer(int id_agent, direction dir);
...

// Observers functions
int tour_actuel();
...

#endif

17



Using another language

So let’s try with Python.

python/
api.py
interface.cc
interface.hh
Makefile
prologin.py

18



Using another language

So let’s try with Python.

python/
api.py
interface.cc
interface.hh
Makefile
prologin.py

api.py contains basics
(constants, enums, structs)

18



Using another language

So let’s try with Python.

python/
api.py
interface.cc
interface.hh
Makefile
prologin.py

interface.cc enables the
Python code to call C++
functions using FFI

18



Using another language

Few more examples:

19



Using another language

Few more examples:

caml/
api.ml
interface.cc
interface.hh
Makefile
prologin.ml
prologin.mli

19



Using another language

Few more examples:

c/
interface.cc
interface.hh
Makefile
prologin.c
prologin.h

19



Using another language

Few more examples:

rust/
api.rs
ffi.rs
interface.cc
interface.hh
Makefile
prologin.h
prologin.rs

haskell/
Api.hs
CApi.hsc
interface.cc
interface_c.cc
interface.hh
Makefile
Prologin.hs

Fun fact
Rust and Haskell were added by contestants themselves!

19



Building

All the languages come with generated code and a Makefile

20



Building

All the languages come with generated code and a Makefile

C++

$ make
cxx prologin.cc -> prologin.o
lib champion.so

20



Building

All the languages come with generated code and a Makefile

Python

$ make
cxx interface.cc -> interface.o
lib champion.so

Interpreted languages still need to compile the interface

20



Building

All the languages come with generated code and a Makefile

Rust

$ make
rustc prologin.rs -> prologin.o
cxx interface.cc -> interface.o
lib champion.so

20



Building

All the languages come with generated code and a Makefile

Rust

$ make
rustc prologin.rs -> prologin.o
cxx interface.cc -> interface.o
lib champion.so

What is this champion.so file anyway?

20



champion.so

.so stands for shared objects

This is a dynamically linked library, used in the matchmaking
system.

21



Launching a match

$ make
cxx prologin.cc -> prologin.o
lib champion.so
$ make tar
tar champion.tgz

Upload this compressed file to the local finals website.

22



Launching a match

Uploading your champion

22



Launching a match

Launching a new match

22



Launching a match

Match replay

22



Problem III: Distributed



Launching a match II

Website

Masternode

WorkernodeWorkernode Workernode

New match

New tasks

Cluster

23



Tasks

Masternode divides tasks among workernodes.

A workernode completes a task.
(compiling a champion, or running a match)

24



Tasks

Masternode divides tasks among workernodes.

A workernode completes a task.
(compiling a champion, or running a match)

24



Network

Communication between masternode and workernodes uses:

• Remote procedure calls (RPC)
• Asynchronous methods

25



Problem IV: Isolated



Need for isolation

• We do not want to execute unknown code on our machines
• Candidats have time and memory limits for their AI

Workernode’s tasks are always running in isolated mode.

26



Need for isolation

• We do not want to execute unknown code on our machines
• Candidats have time and memory limits for their AI

Workernode’s tasks are always running in isolated mode.

26



isolate

https://github.com/ioi/isolate

a sandbox built to safely run untrusted executables,
offering them a limited-access environment and
preventing them from affecting the host system.

Built for IOI (International Olympiads in Informatics)

27

https://github.com/ioi/isolate


isolate

https://github.com/ioi/isolate

a sandbox built to safely run untrusted executables,
offering them a limited-access environment and
preventing them from affecting the host system.

Built for IOI (International Olympiads in Informatics)

27

https://github.com/ioi/isolate


camisole

camisole is:

• Our own secure online judge
• Running isolate as a backend

https://github.com/prologin/camisole

28

https://github.com/prologin/camisole


Conclusion



Useful infos

https://prologin.org

https://github.com/prologin/stechec2

https://github.com/prologin/sadm

https://github.com/prologin/prologin2018

info@prologin.org

#prologin @ irc.freenode.net

29

https://prologin.org
https://github.com/prologin/stechec2
https://github.com/prologin/sadm
https://github.com/prologin/prologin2018
mailto:info@prologin.org


Useful infos

https://prologin.org

https://github.com/prologin/stechec2

https://github.com/prologin/sadm

https://github.com/prologin/prologin2018

info@prologin.org

#prologin @ irc.freenode.net

29

https://prologin.org
https://github.com/prologin/stechec2
https://github.com/prologin/sadm
https://github.com/prologin/prologin2018
mailto:info@prologin.org


Questions?

Thanks for listening!

Thibault ’haltode’ Allançon
thibault.allancon@prologin.org

30

thibault.allancon@prologin.org

	Background
	Architecture
	Problem I: Flexibility
	Problem II: Polyglot
	Problem III: Distributed
	Problem IV: Isolated
	Conclusion

