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= Learning git inner workings

« What | cannot create, | do
not understand »

— Richard Feynman



= Learning git inner workings

= Learning a new programming language: Rust



Disclaimers

= Needs some basic git knowledge
= Skips over some implementation details

= Hard to fit everything into one slide
= Not necessary to understand the core mechanics
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Snapshots, not differences

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/



Git internals

Git objects



Objects types

git has 3 kinds* of objects:
= blob

= tree

= commit



Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree

= commit

filel]| |[file2| [file3]

filel:

Hello World!
file2:

This is a file.
file3:

some file content



Objects types

git has 3 kinds* of objects:

dirl
= blob: stores binary data
= tree: list of blobs, or other trees ;
dir2
= commit \

filel] [file2| [file3]

diril:
blob file3
tree dir2
dir2:
blob filel
blob file2



Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree: list of blobs, or other trees

= commit: snapshot's metadatas \

filel] [file2| [file3]

commit:
tree dirl
author John Doe <john@doe.com> time

committer John Doe <john@doe.com> time

here is the commit message



Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree: list of blobs, or other trees

= commit: snapshot’'s metadatas \

Important
Objects are uniquely identified with a 40-hexdigit SHA-1 hash.



Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte
= object data



Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte
= object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]



Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte

= object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Note

Objects are compressed when stored.



git hash-object

Our first plumbing command!

hash-object: data, type, write

header = (type, space byte, data.len())
(header, null byte, data)
hash = SHA-1(object)
if write

path = hash[..2]/hash[2..]

compress object

object

write object to .git/objects/path

return hash



Git internals

The index



Git workflow

working directory staging area local repo
repo/ .git/index .git/

git add >
git commit >




Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

10



Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum
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Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum

Note
Entries are sorted by path.
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Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.
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= 3 kinds of objects: blob, tree, commit
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= 3 kinds of objects: blob, tree, commit

= All objects are stored in the same way, and identified using a
unique 40-hexdigit hash
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3 kinds of objects: blob, tree, commit

All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

The index is a list of blobs which will be used for the next
commit
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= 3 kinds of objects: blob, tree, commit

= All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

= The index is a list of blobs which will be used for the next
commit

Practice time!
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Basic commands



Basic commands

git init



$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository
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$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/

12



II%HHIEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/

init creates the .git directory (auh)
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Basic commands

git add



Documentation
add files to the index

working directory staging area local repo
repo/ .git/index .git/

git add >
git commit >
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Documentation
add files to the index

add: files
entries = read_index()
for each files
create new index entry
add it to entries list
sort entries

write_index(entries)
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Basic commands

git status



git status

Documentation

files with differences between the working dir and the index

status:
index = read_index()
files = work_dir_files()
for each files
if file.path in index
hash = hash-object(file, "blob")
if hash != entry.hash
"modified"
else
"new"
for each index entry
if entry.path != all files path

"deleted"
14



Basic commands

git diff



git diff

Documentation
changes between the working dir and the index
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git diff

Documentation
changes between the working dir and the index

Far from being a trivial problem!
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Diff example

void func1() {
x += 1
void func1() { b
x += 1
} void functhreehalves() {
x += 1.5
void func2() { }
X += 2
} void func2() {
X += 2
}
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git diff - bad

void funcl() {

x +=1

- void func2() {
+ void functhreehalves() {

- X += 2

+ x += 1.5
}

+

+ void func2() {

+ X += 2

+ }
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git diff - good

void funcl() {

x +=1

void functhreehalves() {
x += 1.5

+ + o+ 4+

void func2() {

X += 2
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git diff - better

void funcl() {

x +=1

void functhreehalves() {
x += 1.5

+ o+ + o+

void func2() {

X += 2
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git diff

git diff --diff-algorithm=

» myers (default): the basic greedy diff algorithm
= minimal: get the smallest possible diff
= patience: try to get more meaningful diff

» histogram: mainly used for its speed

Most diff algorithms are LCS-based (longest common subsequence)
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git diff

diff: paths
index = read_index()
for each paths
stored_file = get_index_entry(path)
stored_obj = get_object(stored_file.hash)
current_data = read_file(path)

print LCS_diff (stored_obj.data, current_data)
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Basic commands

git commit



Documentation

stores the index content as a new commit object

working directory staging area local repo
repo/ .git/index .git/
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Documentation

stores the index content as a new commit object

working directory

repo/

staging area
.git/index

local repo
.git/

write-tree: create a tree object from the current index

git add >

et commt
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git write-tree

write-tree:
entries = []
index = read_index()
for each index entries
parse entry info
append new tree entry to entries list
hash = hash-object(entries, "tree", write=True)
return hash
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commit: message
tree_hash = write-tree()
content =
"tree tree_hash
author author_name time
committer committer_name time
message"

hash = hash-object(content, "commit", write=True)

return hash
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git commit - history

Great, we have snapshots...
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git commit - history

Great, we have snapshots...

...but we need a stream of snapshots

commit 1 H commit 2 ‘<—{ commit 3
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commit: message
tree_hash = write-tree()

+ parent_hash = get current commit (HEAD)
content =

"tree tree_hash

+ parent parent_hash
author author_name time
committer committer_name time

message"

hash = hash-object(content, "commit", write=True)
+ update HEAD

return hash
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= git add is merely about adding a new line to the index
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= git add is merely about adding a new line to the index

= git status/diff compares working dir and the index
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= git add is merely about adding a new line to the index
= git status/diff compares working dir and the index

» git commit creates two new objects: a tree (based on the
index), and a commit
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= git add is merely about adding a new line to the index
= git status/diff compares working dir and the index

» git commit creates two new objects: a tree (based on the
index), and a commit

Practice time!
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Branches




Fundamentals

A branch is simply a lightweight movable pointer to a commit.
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Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.
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Fundamentals

A branch is simply a lightweight movable pointer to a commit.
Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.
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Fundamentals

A branch is simply a lightweight movable pointer to a commit.
Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:

.git/refs/heads/
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Branches

git branch



git branch

Documentation

create a new branch

branch: name
check if repo has at least 1 commit
get current commit hash (HEAD)
write the hash to .git/refs/heads/name
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Branches

git checkout



HEAD file

commit 1 H commit 2 ‘<—{ commit 3 ‘

master is checked out

30



HEAD file

commit 1 H commit 2 ‘<—{ commit 3 ‘

master is checked out

If the HEAD is pointing to a branch,

t .git/HEAD
$ cat .git/ it will not contain the commit hash,

f: fs/head t
refil refs/heads/master but a symlink to the branch
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HEAD file

’ commit 1 H commit 2 ‘<—{ commit 3 ‘

HEAD is detached
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HEAD file

’ commit 1 H commit 2 ‘<—{ commit 3 ‘

HEAD is detached

$ cat .git/HEAD
b445e58e2ada96566ec4966bd202c59ef1c2bdb7
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git checkout

Documentation

switch to a branch

checkout: ref
check if ref is a commit object
compare trees between ref commit and HEAD commit
for each diff
add/modify/delete the file
update index
update HEAD
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Branches

git merge



Case 1: fast-forward

master

commit 1 H commit 2 ‘<—{ commit 3 ‘
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Case 1: fast-forward

$ git branch fix_issue
$ git checkout fix_issue

Switched to branch 'fix_issue'

master

commit 1 H commit 2 ‘<—{ commit 3 ‘
fix__issue
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Case 1: fast-forward

$ git commit -m "commit 4"

[fix_issue 538cfab] commit 4

master

commit 1 H commit 2 ‘<—{ commit 3 commit 4
fix_issue
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Case 1: fast-forward

$ git checkout master
Switched to branch 'master'
$ git merge fix_issue

Fast-forward

master

commit 1 F—{ commit 2 ‘<—{ commit 3 commit 4
fix_issue
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Case 2: non fast-forward

master

commit 1 }<—{ commit 2 ‘<—{ commit 3 ‘<—{ commit 4‘

fix__issue

33



Case 2: non fast-forward

$ git checkout master

master
$ git commit -m "commit 5"

[master 6600e17] commit 5

commit 5

¥

’conwnﬁt 1 ng{con1nﬁt 2‘644{con1nﬂt 3

commit 4

]

fix_issue
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Case 2: non fast-forward

$ git merge fix_issue
Merge made by the 'recursive' strategy.

commit 1 }<—{ commit 2 ‘<—{ commit 3 ‘

commit 4
fix_issue
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merge: r
chec

// C
if H

// C

else

ef

k if ref is a commit object
ase 1: fast-forward

EAD is ancestor of ref
update working dir from ref
update HEAD

ase 2: non fast-forward

get diffs from common ancestor
update working dir
update HEAD
if conflicts

"Need to resolve conflicts"
else

commit ("Merge ... into ...")
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= branches are simple files containing a hash
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= branches are simple files containing a hash

= HEAD can point to a branch, or a specific commit
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= fast-forward merge (easy one)
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= branches are simple files containing a hash
= HEAD can point to a branch, or a specific commit
= fast-forward merge (easy one)

= non fast-forward merge: use common ancestors

Practice time!
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Conclusion




Resources

= https://git-scm.com/book/en/v2
» https://git-scm.com/docs

= https://matthew-brett.github.io/curious-git/

https://github.com/haltode/gitrs: the full implementation
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https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://matthew-brett.github.io/curious-git/
https://github.com/haltode/gitrs

Questions?

Thanks for listening!

Thibault Allancon
thibault.allancon@prologin.org
haltode @ irc.freenode.net
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