Re-implementing git

(a small part at least)

Thibault Allancon
November 2018

= Learning git inner workings

« What | cannot create, | do
not understand »

— Richard Feynman

= Learning git inner workings

= Learning a new programming language: Rust

Disclaimers

= Needs some basic git knowledge
= Skips over some implementation details

= Hard to fit everything into one slide
= Not necessary to understand the core mechanics

Table of contents

1. Git internals
2. Basic commands

3. Branches

Git internals

Fundamentals

Snapshots, not differences

Fundamentals

Snapshots, not differences

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/

Git internals

Git objects

Objects types

git has 3 kinds* of objects:
= blob

= tree

= commit

Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree

= commit

filel]| |[file2| [file3]

filel:

Hello World!
file2:

This is a file.
file3:

some file content

Objects types

git has 3 kinds* of objects:

dirl
= blob: stores binary data
= tree: list of blobs, or other trees ;
dir2
= commit \

filel] [file2| [file3]

diril:
blob file3
tree dir2
dir2:
blob filel
blob file2

Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree: list of blobs, or other trees

= commit: snapshot's metadatas \

filel] [file2| [file3]

commit:
tree dirl
author John Doe <john@doe.com> time

committer John Doe <john@doe.com> time

here is the commit message

Objects types

git has 3 kinds* of objects:

= blob: stores binary data
= tree: list of blobs, or other trees

= commit: snapshot’'s metadatas \

Important
Objects are uniquely identified with a 40-hexdigit SHA-1 hash.

Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte
= object data

Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte
= object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Objects storage

Every object is stored following this format:

= header: "obj_type data_len"
= null byte

= object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Note

Objects are compressed when stored.

git hash-object

Our first plumbing command!

hash-object: data, type, write

header = (type, space byte, data.len())
(header, null byte, data)
hash = SHA-1(object)
if write

path = hash[..2]/hash[2..]

compress object

object

write object to .git/objects/path

return hash

Git internals

The index

Git workflow

working directory staging area local repo
repo/ .git/index .git/

git add >
git commit >

Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

10

Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum

10

Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum

Note
Entries are sorted by path.

10

Index storage

The index is a binary file (in .git/index) storing blobs list for next

commit

= header: DIRC2 nb_entries
= entry: file metadata, file size, hash, flags, path

= index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.

10

= 3 kinds of objects: blob, tree, commit

11

= 3 kinds of objects: blob, tree, commit

= All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

11

3 kinds of objects: blob, tree, commit

All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

The index is a list of blobs which will be used for the next
commit

11

= 3 kinds of objects: blob, tree, commit

= All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

= The index is a list of blobs which will be used for the next
commit

Practice time!

11

Basic commands

Basic commands

git init

$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository

12

II%HHIEHHHIII

$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/

12

II%HHIEHHHIII

$ mkdir repo

$ cd repo

$ git init

Initialized empty Git repository

repo/

| .git/
HEAD
objects/
refs/

theads/
remotes/

init creates the .git directory (auh)

12

Basic commands

git add

Documentation
add files to the index

working directory staging area local repo
repo/ .git/index .git/

git add >
git commit >

13

|II%HHIE%iHIII

Documentation
add files to the index

add: files
entries = read_index()
for each files
create new index entry
add it to entries list
sort entries

write_index(entries)

13

Basic commands

git status

git status

Documentation

files with differences between the working dir and the index

status:
index = read_index()
files = work_dir_files()
for each files
if file.path in index
hash = hash-object(file, "blob")
if hash != entry.hash
"modified"
else
"new"
for each index entry
if entry.path != all files path

"deleted"
14

Basic commands

git diff

git diff

Documentation
changes between the working dir and the index

15

git diff

Documentation
changes between the working dir and the index

Far from being a trivial problem!

15

Diff example

void func1() {
x += 1
void func1() { b
x += 1
} void functhreehalves() {
x += 1.5
void func2() { }
X += 2
} void func2() {
X += 2
}

16

git diff - bad

void funcl() {

x +=1

- void func2() {
+ void functhreehalves() {

- X += 2

+ x += 1.5
}

+

+ void func2() {

+ X += 2

+ }

17

git diff - good

void funcl() {

x +=1

void functhreehalves() {
x += 1.5

+ + o+ 4+

void func2() {

X += 2

18

git diff - better

void funcl() {

x +=1

void functhreehalves() {
x += 1.5

+ o+ + o+

void func2() {

X += 2

19

git diff

git diff --diff-algorithm=

» myers (default): the basic greedy diff algorithm
= minimal: get the smallest possible diff
= patience: try to get more meaningful diff

» histogram: mainly used for its speed

Most diff algorithms are LCS-based (longest common subsequence)

20

git diff

diff: paths
index = read_index()
for each paths
stored_file = get_index_entry(path)
stored_obj = get_object(stored_file.hash)
current_data = read_file(path)

print LCS_diff (stored_obj.data, current_data)

21

Basic commands

git commit

Documentation

stores the index content as a new commit object

working directory staging area local repo
repo/ .git/index .git/

22

Documentation

stores the index content as a new commit object

working directory

repo/

staging area
.git/index

local repo
.git/

write-tree: create a tree object from the current index

git add >

et commt

22

git write-tree

write-tree:
entries = []
index = read_index()
for each index entries
parse entry info
append new tree entry to entries list
hash = hash-object(entries, "tree", write=True)
return hash

23

commit: message
tree_hash = write-tree()
content =
"tree tree_hash
author author_name time
committer committer_name time
message"

hash = hash-object(content, "commit", write=True)

return hash

24

git commit - history

Great, we have snapshots...

25

git commit - history

Great, we have snapshots...

...but we need a stream of snapshots

commit 1 H commit 2 ‘<—{ commit 3

25

commit: message
tree_hash = write-tree()

+ parent_hash = get current commit (HEAD)
content =

"tree tree_hash

+ parent parent_hash
author author_name time
committer committer_name time

message"

hash = hash-object(content, "commit", write=True)
+ update HEAD

return hash

26

= git add is merely about adding a new line to the index

27

= git add is merely about adding a new line to the index

= git status/diff compares working dir and the index

27

= git add is merely about adding a new line to the index
= git status/diff compares working dir and the index

» git commit creates two new objects: a tree (based on the
index), and a commit

27

= git add is merely about adding a new line to the index
= git status/diff compares working dir and the index

» git commit creates two new objects: a tree (based on the
index), and a commit

Practice time!

27

Branches

Fundamentals

A branch is simply a lightweight movable pointer to a commit.

28

Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.

28

Fundamentals

A branch is simply a lightweight movable pointer to a commit.
Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

28

Fundamentals

A branch is simply a lightweight movable pointer to a commit.
Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:

.git/refs/heads/

28

Branches

git branch

git branch

Documentation

create a new branch

branch: name
check if repo has at least 1 commit
get current commit hash (HEAD)
write the hash to .git/refs/heads/name

29

Branches

git checkout

HEAD file

commit 1 H commit 2 ‘<—{ commit 3 ‘

master is checked out

30

HEAD file

commit 1 H commit 2 ‘<—{ commit 3 ‘

master is checked out

If the HEAD is pointing to a branch,

t .git/HEAD
$ cat .git/ it will not contain the commit hash,

f: fs/head t
refil refs/heads/master but a symlink to the branch

30

HEAD file

’ commit 1 H commit 2 ‘<—{ commit 3 ‘

HEAD is detached

30

HEAD file

’ commit 1 H commit 2 ‘<—{ commit 3 ‘

HEAD is detached

$ cat .git/HEAD
b445e58e2ada96566ec4966bd202c59ef1c2bdb7

30

git checkout

Documentation

switch to a branch

checkout: ref
check if ref is a commit object
compare trees between ref commit and HEAD commit
for each diff
add/modify/delete the file
update index
update HEAD

31

Branches

git merge

Case 1: fast-forward

master

commit 1 H commit 2 ‘<—{ commit 3 ‘

32

Case 1: fast-forward

$ git branch fix_issue
$ git checkout fix_issue

Switched to branch 'fix_issue'

master

commit 1 H commit 2 ‘<—{ commit 3 ‘
fix__issue

32

Case 1: fast-forward

$ git commit -m "commit 4"

[fix_issue 538cfab] commit 4

master

commit 1 H commit 2 ‘<—{ commit 3 commit 4
fix_issue

32

Case 1: fast-forward

$ git checkout master
Switched to branch 'master'
$ git merge fix_issue

Fast-forward

master

commit 1 F—{ commit 2 ‘<—{ commit 3 commit 4
fix_issue

32

Case 2: non fast-forward

master

commit 1 }<—{ commit 2 ‘<—{ commit 3 ‘<—{ commit 4‘

fix__issue

33

Case 2: non fast-forward

$ git checkout master

master
$ git commit -m "commit 5"

[master 6600e17] commit 5

commit 5

¥

’conwnﬁt 1 ng{con1nﬁt 2‘644{con1nﬂt 3

commit 4

]

fix_issue

33

Case 2: non fast-forward

$ git merge fix_issue
Merge made by the 'recursive' strategy.

commit 1 }<—{ commit 2 ‘<—{ commit 3 ‘

commit 4
fix_issue

33

|II%HHIIHg%E%!III

merge: r
chec

// C
if H

// C

else

ef

k if ref is a commit object
ase 1: fast-forward

EAD is ancestor of ref
update working dir from ref
update HEAD

ase 2: non fast-forward

get diffs from common ancestor
update working dir
update HEAD
if conflicts

"Need to resolve conflicts"
else

commit ("Merge ... into ...")

34

= branches are simple files containing a hash

35

= branches are simple files containing a hash

= HEAD can point to a branch, or a specific commit

35

= branches are simple files containing a hash
= HEAD can point to a branch, or a specific commit

= fast-forward merge (easy one)

35

= branches are simple files containing a hash
= HEAD can point to a branch, or a specific commit
= fast-forward merge (easy one)

= non fast-forward merge: use common ancestors

35

= branches are simple files containing a hash
= HEAD can point to a branch, or a specific commit
= fast-forward merge (easy one)

= non fast-forward merge: use common ancestors

Practice time!

35

Conclusion

Resources

= https://git-scm.com/book/en/v2
» https://git-scm.com/docs

= https://matthew-brett.github.io/curious-git/

https://github.com/haltode/gitrs: the full implementation

36

https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://matthew-brett.github.io/curious-git/
https://github.com/haltode/gitrs

Questions?

Thanks for listening!

Thibault Allancon
thibault.allancon@prologin.org
haltode @ irc.freenode.net

37

thibault.allancon@prologin.org

