
Re-implementing git
(a small part at least)

Thibault Allançon
November 2018

1



Motivation

• Learning git inner workings

• Learning a new programming language: Rust

« What I cannot create, I do
not understand »

— Richard Feynman

2



Motivation

• Learning git inner workings
• Learning a new programming language: Rust

2



Disclaimers

• Needs some basic git knowledge
• Skips over some implementation details

• Hard to fit everything into one slide
• Not necessary to understand the core mechanics

3



Table of contents

1. Git internals

2. Basic commands

3. Branches

4



Git internals



Fundamentals

Snapshots, not differences

repo/
.git/

HEAD
objects/
refs/

heads/
remotes/

...

5



Fundamentals

Snapshots, not differences

repo/
.git/

HEAD
objects/
refs/

heads/
remotes/

...

5



Git internals

Git objects



Objects types

git has 3 kinds∗ of objects:

• blob

: stores binary data

• tree

: list of blobs, or other trees

• commit

: snapshot’s metadatas

file1 file2 file3

dir2

dir1

commit

6



Objects types

git has 3 kinds∗ of objects:

• blob: stores binary data
• tree

: list of blobs, or other trees

• commit

: snapshot’s metadatas

file1 file2 file3

dir2

dir1

commit

file1:
Hello World!

file2:
This is a file.

file3:
some file content

6



Objects types

git has 3 kinds∗ of objects:

• blob: stores binary data
• tree: list of blobs, or other trees
• commit

: snapshot’s metadatas

file1 file2 file3

dir2

dir1

commit

dir1:
blob file3
tree dir2

dir2:
blob file1
blob file2

6



Objects types

git has 3 kinds∗ of objects:

• blob: stores binary data
• tree: list of blobs, or other trees
• commit: snapshot’s metadatas

file1 file2 file3

dir2

dir1

commit

commit:
tree dir1
author John Doe <john@doe.com> time
committer John Doe <john@doe.com> time

here is the commit message
6



Objects types

git has 3 kinds∗ of objects:

• blob: stores binary data
• tree: list of blobs, or other trees
• commit: snapshot’s metadatas

file1 file2 file3

dir2

dir1

commit

Important
Objects are uniquely identified with a 40-hexdigit SHA-1 hash.

6



Objects storage

Every object is stored following this format:

• header: "obj_type data_len"

• null byte
• object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Note
Objects are compressed when stored.

7



Objects storage

Every object is stored following this format:

• header: "obj_type data_len"

• null byte
• object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Note
Objects are compressed when stored.

7



Objects storage

Every object is stored following this format:

• header: "obj_type data_len"

• null byte
• object data

The location of the object is defined as:
.git/objects/hash[..2]/hash[2..]

Note
Objects are compressed when stored.

7



git hash-object

Our first plumbing command!

hash-object: data, type, write
header = (type, space byte, data.len())
object = (header, null byte, data)
hash = SHA-1(object)
if write

path = hash[..2]/hash[2..]
compress object
write object to .git/objects/path

return hash

8



Git internals

The index



Git workflow

working directory
repo/

staging area
.git/index

local repo
.git/

git add

git commit

9



Index storage

The index is a binary file (in .git/index) storing blobs list for next
commit

• header: DIRC2 nb_entries

• entry: file metadata, file size, hash, flags, path

• index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.

10



Index storage

The index is a binary file (in .git/index) storing blobs list for next
commit

• header: DIRC2 nb_entries

• entry: file metadata, file size, hash, flags, path

• index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.

10



Index storage

The index is a binary file (in .git/index) storing blobs list for next
commit

• header: DIRC2 nb_entries

• entry: file metadata, file size, hash, flags, path

• index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.

10



Index storage

The index is a binary file (in .git/index) storing blobs list for next
commit

• header: DIRC2 nb_entries

• entry: file metadata, file size, hash, flags, path

• index file checksum

Note
Entries are sorted by path.

Two new plumbing commands: read_index, write_index.

10



Recap

• 3 kinds of objects: blob, tree, commit

• All objects are stored in the same way, and identified using a
unique 40-hexdigit hash

• The index is a list of blobs which will be used for the next
commit

Practice time!

11



Recap

• 3 kinds of objects: blob, tree, commit
• All objects are stored in the same way, and identified using a

unique 40-hexdigit hash

• The index is a list of blobs which will be used for the next
commit

Practice time!

11



Recap

• 3 kinds of objects: blob, tree, commit
• All objects are stored in the same way, and identified using a

unique 40-hexdigit hash
• The index is a list of blobs which will be used for the next

commit

Practice time!

11



Recap

• 3 kinds of objects: blob, tree, commit
• All objects are stored in the same way, and identified using a

unique 40-hexdigit hash
• The index is a list of blobs which will be used for the next

commit

Practice time!

11



Basic commands



Basic commands

git init



git init

$ mkdir repo
$ cd repo
$ git init
Initialized empty Git repository

repo/
.git/

HEAD
objects/
refs/

heads/
remotes/

...

12



git init

$ mkdir repo
$ cd repo
$ git init
Initialized empty Git repository

repo/
.git/

HEAD
objects/
refs/

heads/
remotes/

...

12



git init

$ mkdir repo
$ cd repo
$ git init
Initialized empty Git repository

repo/
.git/

HEAD
objects/
refs/

heads/
remotes/

...

init creates the .git directory (duh.)

12



Basic commands

git add



git add

Documentation
add files to the index

working directory
repo/

staging area
.git/index

local repo
.git/

git add

git commit

13



git add

Documentation
add files to the index

add: files
entries = read_index()
for each files

create new index entry
add it to entries list

sort entries
write_index(entries)

13



Basic commands

git status



git status

Documentation
files with differences between the working dir and the index

status:
index = read_index()
files = work_dir_files()
for each files

if file.path in index
hash = hash-object(file, "blob")
if hash != entry.hash

"modified"
else

"new"
for each index entry

if entry.path != all files path
"deleted"

14



Basic commands

git diff



git diff

Documentation
changes between the working dir and the index

Far from being a trivial problem!

15



git diff

Documentation
changes between the working dir and the index

Far from being a trivial problem!

15



Diff example

void func1() {
x += 1

}

void func2() {
x += 2

}

void func1() {
x += 1

}

void functhreehalves() {
x += 1.5

}

void func2() {
x += 2

}

16



git diff - bad

void func1() {
x += 1

}

- void func2() {
+ void functhreehalves() {
- x += 2
+ x += 1.5

}
+
+ void func2() {
+ x += 2
+ }

17



git diff - good

void func1() {
x += 1

+ }
+
+ void functhreehalves() {
+ x += 1.5

}

void func2() {
x += 2

}

18



git diff - better

void func1() {
x += 1

}

+ void functhreehalves() {
+ x += 1.5
+ }
+

void func2() {
x += 2

}

19



git diff

git diff --diff-algorithm=

• myers (default): the basic greedy diff algorithm
• minimal: get the smallest possible diff
• patience: try to get more meaningful diff
• histogram: mainly used for its speed

Most diff algorithms are LCS-based (longest common subsequence)

20



git diff

diff: paths
index = read_index()
for each paths

stored_file = get_index_entry(path)
stored_obj = get_object(stored_file.hash)
current_data = read_file(path)

print LCS_diff(stored_obj.data, current_data)

21



Basic commands

git commit



git commit

Documentation
stores the index content as a new commit object

working directory
repo/

staging area
.git/index

local repo
.git/

git add

git commit

write-tree: create a tree object from the current index

22



git commit

Documentation
stores the index content as a new commit object

working directory
repo/

staging area
.git/index

local repo
.git/

git add

git commit

write-tree: create a tree object from the current index

22



git write-tree

write-tree:
entries = []
index = read_index()
for each index entries

parse entry info
append new tree entry to entries list

hash = hash-object(entries, "tree", write=True)
return hash

23



git commit

commit: message
tree_hash = write-tree()
content =

"tree tree_hash
author author_name time
committer committer_name time
message"

hash = hash-object(content, "commit", write=True)
return hash

24



git commit - history

Great, we have snapshots...

...but we need a stream of snapshots

commit 1 commit 2 commit 3 commit 4

25



git commit - history

Great, we have snapshots...

...but we need a stream of snapshots

commit 1 commit 2 commit 3 commit 4

25



git commit

commit: message
tree_hash = write-tree()

+ parent_hash = get current commit (HEAD)
content =

"tree tree_hash
+ parent parent_hash

author author_name time
committer committer_name time
message"

hash = hash-object(content, "commit", write=True)
+ update HEAD

return hash

26



Recap

• git add is merely about adding a new line to the index

• git status/diff compares working dir and the index
• git commit creates two new objects: a tree (based on the

index), and a commit

Practice time!

27



Recap

• git add is merely about adding a new line to the index
• git status/diff compares working dir and the index

• git commit creates two new objects: a tree (based on the
index), and a commit

Practice time!

27



Recap

• git add is merely about adding a new line to the index
• git status/diff compares working dir and the index
• git commit creates two new objects: a tree (based on the

index), and a commit

Practice time!

27



Recap

• git add is merely about adding a new line to the index
• git status/diff compares working dir and the index
• git commit creates two new objects: a tree (based on the

index), and a commit

Practice time!

27



Branches



Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:
.git/refs/heads/

28



Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:
.git/refs/heads/

28



Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:
.git/refs/heads/

28



Fundamentals

A branch is simply a lightweight movable pointer to a commit.

Problem: remembering commit’s hash is hard.

Solution: use files with simple names, containing the hash, and
refer to those files intead.

These are called references and are stored under:
.git/refs/heads/

28



Branches

git branch



git branch

Documentation
create a new branch

branch: name
check if repo has at least 1 commit
get current commit hash (HEAD)
write the hash to .git/refs/heads/name

29



Branches

git checkout



HEAD file

commit 1 commit 2 commit 3

master

HEAD

HEAD

master is checked out

30



HEAD file

commit 1 commit 2 commit 3

master

HEAD

HEAD

master is checked out

$ cat .git/HEAD
ref: refs/heads/master

If the HEAD is pointing to a branch,
it will not contain the commit hash,
but a symlink to the branch

30



HEAD file

commit 1 commit 2 commit 3

master

HEAD

HEAD

HEAD is detached

30



HEAD file

commit 1 commit 2 commit 3

master

HEAD

HEAD

HEAD is detached

$ cat .git/HEAD
b445e58e2ada96566ec4966bd202c59ef1c2bdb7

30



git checkout

Documentation
switch to a branch

checkout: ref
check if ref is a commit object
compare trees between ref commit and HEAD commit
for each diff

add/modify/delete the file
update index
update HEAD

31



Branches

git merge



Case 1: fast-forward

commit 1 commit 2 commit 3

master

32



Case 1: fast-forward

$ git branch fix_issue
$ git checkout fix_issue
Switched to branch 'fix_issue'

commit 1 commit 2 commit 3

master

fix_issue

32



Case 1: fast-forward

...
$ git commit -m "commit 4"
[fix_issue 538cfab] commit 4

commit 1 commit 2 commit 3

master

commit 4

fix_issue

32



Case 1: fast-forward

$ git checkout master
Switched to branch 'master'
$ git merge fix_issue
Fast-forward

commit 1 commit 2 commit 3 commit 4

fix_issue

master

32



Case 2: non fast-forward

commit 1 commit 2 commit 3 commit 4

master

fix_issue

commit 5

commit 4

fix_issue

33



Case 2: non fast-forward

$ git checkout master
...
$ git commit -m "commit 5"
[master 6600e17] commit 5

commit 1 commit 2 commit 3

master

commit 5

commit 4

fix_issue

33



Case 2: non fast-forward

$ git merge fix_issue
Merge made by the 'recursive' strategy.

commit 1 commit 2 commit 3

commit 5

commit 4

fix_issue

merge

master

33



git merge

merge: ref
check if ref is a commit object
// Case 1: fast-forward
if HEAD is ancestor of ref

update working dir from ref
update HEAD

// Case 2: non fast-forward
else

get diffs from common ancestor
update working dir
update HEAD
if conflicts

"Need to resolve conflicts"
else

commit("Merge ... into ...")

34



Recap

• branches are simple files containing a hash

• HEAD can point to a branch, or a specific commit
• fast-forward merge (easy one)
• non fast-forward merge: use common ancestors

Practice time!

35



Recap

• branches are simple files containing a hash
• HEAD can point to a branch, or a specific commit

• fast-forward merge (easy one)
• non fast-forward merge: use common ancestors

Practice time!

35



Recap

• branches are simple files containing a hash
• HEAD can point to a branch, or a specific commit
• fast-forward merge (easy one)

• non fast-forward merge: use common ancestors

Practice time!

35



Recap

• branches are simple files containing a hash
• HEAD can point to a branch, or a specific commit
• fast-forward merge (easy one)
• non fast-forward merge: use common ancestors

Practice time!

35



Recap

• branches are simple files containing a hash
• HEAD can point to a branch, or a specific commit
• fast-forward merge (easy one)
• non fast-forward merge: use common ancestors

Practice time!

35



Conclusion



Resources

• https://git-scm.com/book/en/v2

• https://git-scm.com/docs

• https://matthew-brett.github.io/curious-git/

https://github.com/haltode/gitrs: the full implementation

36

https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://matthew-brett.github.io/curious-git/
https://github.com/haltode/gitrs


Questions?

Thanks for listening!

Thibault Allançon
thibault.allancon@prologin.org

haltode @ irc.freenode.net

37

thibault.allancon@prologin.org

